QALAAI ZANISTSCIENTIFIC JOURNAL

A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq

LFU

Vol. (10), No (4), Winter 2024

ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

WEB TEST CASE GENERATION WITH TIME OPTIMIZATION USING

Lana Kamal Mohammed

GRAPH DECOMPOSITION

Department of Software and Informatics Engineering, College of Engineering, Salahaddin
University, Erbil, Kurdistan Region, Iraq
Email: lana.kamal.m.a@gmail.com

Moayad Y. Potrus

Department of Information Technology, College of Engineering and Computer Science,
Lebanese French University, Kurdistan Region, Iraq
Email: moayad.yousif@Ifu.edu.krd

ARTICLE INFO

ABSTRACT

Article History:
Received:1/7/2023
Accepted: 5/9/2023
Published: Winter2024

Keywords:

Graph Theory, web
application testing
(WAT), dynamic
website, test case
generation, software
testing, Automated
testing, Automated
model-based testing

Doi:
10.25212/Ifu.qzj.9.4.54

Web application testing is an essential process in software
development that has become increasingly important in
recent years because of the growing complexity and
dynamic nature of web applications, in addition to the need
to ensure their quality in a highly competitive market. The
dynamic nature of web applications is one among the major
difficulties in the field of testing web applications. Also, it is
crucial to strike a balance between time to market and
software quality. Furthermore, in an era of rapid
technological advancement, web application testing remains
an ongoing and evolving challenge for developers. Thus, this
research proposes an approach to optimize the time of the
testing phase in the software development life cycle. Within
this work, the web application is represented as a graph
model, which is then decomposed to facilitate the automatic
generation of test cases. And presents an updated graph
decomposition algorithm and demonstrates its usefulness in
partitioning the graph models of web applications under
test. Based on the results, applying the suggested work can
reduce the testing time by ~90%. This significant time-saving
potential not only accelerates the development lifecycle but
also enables developers to allocate more resources to
comprehensive testing, leading to more robust and reliable

1417

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

web applications.

1. Introduction

Software testing is categorized as a risky phase in the Software development life
cycle (Jamil et al., 2016). With the huge increase of internet, content and the flows
of internet infrastructure, the testing becomes more challenging, especially for
dynamic websites which are more complex than other types of software due to the
change of their content based on users interests, time zones, user’s spoken
language and many more parameters (Wen, 2001). Consequently, optimizing time
spent in the testing phase and increasing accuracy is strongly needed (Yahaya et al.,
2017).

Studies have shown that a large number of websites on the internet does not meet
the quality standards (Yahaya et al., 2017). In websites, links can break for many
reasons. Some links may be changed or renamed or removed which causes the link
to break. Therefore, it is important to verify all of the connections on the website's
pages again (Khan et al., 2019). Depending on the size of the website and the
number of links on each page, it might take a very long period to check every link on
every page. The very worst situation for manually checking website links is that each
link must be clicked individually in order to report any broken links by determining
whether or not the given link is loading.

Software automation testing can speed up and simplify the testing process (Fewster
& Graham, 1999). As a result, automating the procedure of checking website links
provides an easy solution for ensuring the quality of the software prior to the
production phase (Miller, 2005). Since the servers and data used in the
development and production environments are distinct from one another. In
accordance with that, it is advantageous to check the links before launching the
website in order to identify any damaged links in the production environment.

It takes a while to verify all the web connections consecutively, even with
automated tools. All of a website's connections can be visualized as a graph with
each edge representing a link. Graph Decomposition is the process of dividing a

1418

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

graph into sub graphs where each edge in the graph corresponds to precisely one of
the sub graphs (Arumugam et al.,, 2013). Thus, by using one of the graph
decomposition methods to partition the website link graph into smaller
communities, the process of validating the links will go more quickly.

As mentioned in (Setiani et al., 2019) review, there isn’t much research about
software testing in web-based applications. Thus, In order to increase the quality of
websites, especially dynamic websites, this paper aims to solve one of the
deployment issues which are the problem of broken links in the production
environment. In this research work, test cases are automatically generated to help
testers determine how to test their software most effectively while using the least
amount of time feasible. The test scenarios are built upon the link graph of the
website, which forms the basis for their development. Afterward, divide this graph
into equal-sized modules. The path coverage approach is utilized to generate test
cases for each level of the partitioned graph. As a result, the calculated times for
each stage offer the most accurate testing times.

The paper is divided into the following sections: Section 2 provides a background of
web testing. Then, the related studies are discussed in Section 3. The methodology
is explained in section 4. Finally, the last section presents each and every result
found. Finally, section 6 concludes the research.

2. Background

Early websites were straightforward and contained a few static pages that were
simple to test and ensure the quality of. However, websites are transforming into
more complicated forms of dynamic pages that are altered based on a variety of
factors, such as the user, time zone, spoken language and many others. The content
and presentation of a static website are combined, whereas a dynamic website's
content (data) is kept in a database and its presentation is built automatically using
a template. Since the data and the way, the content is presented can be separated
on dynamic websites, they have an advantage over static websites. This helps to the
website's higher quality and maintainability (Ricca & Tonella, 2003).

1419

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

In software marketing, software quality is going to become more important. The
importance of testing procedures will increase over time as this situation changes
(Kassab et al., 2017). In a software project, testing might be the most costly phase.
According to one of the estimations, the projects testing process consumed more
than half of its resources (Kit & Finzi, 1995). If a software bug wasn't discovered
sooner, it will cost more to repair. Therefore, the cost of poor-quality software will
increase exponentially. Thus, both for software users and developers, increasing
software quality and the efficiency of testing phase are considered practical ways to
minimize software expenses in the long term (Kasurinen et al., 2010).

Testing outcomes are significantly improved and the overall number of defects is
reduced when a tester is aware of the sort of testing that is required (Freeman,
2002). There are many different types of testing that are widely used including
structure and behavioral testing. In structure testing, the internal code of the
system is relied on to test the system. However, the behavioral testing concentrates
on the behavior (functionality) to check if it behaves as expected which is
determined on the requirements.

There are many factors that contribute in the development of low-quality software.
The complexity of software deployment in distributed and heterogeneous
environments, the necessity of customer-centric customization and configuration
during deployment, the difficulties of updating and adapting installed software, and
the process of un-deployment or deinstallation are just a few of the deployment-
related issues (Dearle, 2007). Dearle also emphasizes the current trends, problems,
and difficulties in deployment systems, including the requirement for metadata
repositories, the emergence of model-driven development tools, and the
deployment issues in the wireless sensor-net domains and mobile areas. By
resolving deployment issues, program quality can be improved.

Some methods can be used to enhance the quality of software. Graph partitioning is
a method used in computer software to minimize a system's complexity and
emphasize its components. It entails dividing a program graph, which is a graph
structural model of a program displaying the flow relation or link among the
program's components (statements), into distinct groups of intervals or segments.

1420

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

The reduced graph that results only contains the paths and the intervals between
them. This reduced graph can reflect the basic structure of the program graph,
making it easier to analyze and understand (Paige, 1977). It is a fundamental tool in
the study of software engineering and has many uses, such as computation analysis
and structural testing of programs.

3. Related Work

In recent years, the significance of web applications has increased (Zou et al., 2014).
Due to this, the field of web application testing is gaining more attention from
researchers. In this section, related research about web application testing
techniques and tools are discussed. Each research is conducted to cover different
subjects in web testing and use different testing methodologies. One of the testing
Methodologies that is widely used in software testing called Model-Based Testing
(MBT) which involves developing a model of the software under test, and then
using that model to generate test cases (Achkar, 2010).

Many researchers used the MBT approach including (Tanida et al., 2013) proposed a
technique that automatically tests dynamic websites. The technique dynamically
generates the model based on the crawling then uses the generated model to check
the website navigations. Although the author (Tanida et al., 2013) is offering higher
coverage and a higher level of automation than the other methods but it has some
limitations including 1. The reproducibility of counterexamples may depend on the
degree of abstraction used in the approach. 2. False positives may occur because
the STG calculated by the crawler overestimates the true possibility of the website's
set of traces. 3. The implementation of the software tools utilized may affect the
evaluation's internal validity.

Another research based on model-based testing (MBT), (Potrus, 2020) developed an
algorithm and a strategy for automated testing of websites, which can explore and
detect nodes and events of the website under testing, generate a full-model
automatically during the exploration process, and break it into smaller sub-models
for more accurate and less time-consuming test case generation. Also, (Panthi &
Mohapatra, 2017) proposed a MBT approach for dynamic websites. The research

1421

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

gives better results in the process of executing search engines and how various
websites work together. Also, it may improve the quality of web applications by
covering every transaction and node in the website, which covers the program code
indirectly. But the approach may not be suitable and optimal for all web
development languages and frameworks.

Some studies applied model-based testing with an UML model containing (Nagowah
& Kora-Ramiah, 2017) proposed and evaluated a tool called CRaTCP (Combinatorial
Regression and Test Case Prioritization). CRaTCP is a GUI testing approach that
offers test case extraction and GUI ripping. The tool utilized for testing a web page
with every combination of possibilities of the user interface elements. The proposed
work has some limitations, but the most important to mention is that CRaTCP may
not be able to handle dynamic web pages that change frequently. This makes the
tool less beneficial nowadays since most of the websites feature dynamic pages that
change based on a variety of factors.

Another approach is using (Virtual DOM) tree that was used by (Zou et al., 2014) to
execute the model on the client and server side, and developing test generation
techniques that combine concrete and symbolic executions to expose faults in web
applications. The work also involves the use of static analysis to construct V-DOM
trees and the development of crawlability measurements that are used to quantify
web application characteristics that have an impact on crawling.

In a research, (de Moura et al., 2017) proposed a web application testing technique
that is mainly focused on functional testing to help in the conversion of the BPMN
models to create test cases for functional automated testing of websites with BPMS
support. The approach involves analyzing BPMN-formatted XML files that are from
BPMS tools to determine the particular stages or flows that require testing. It
creates a table listing all the potential flows that can occur. The table's outcomes
are then used in a specialized tool that produces the initial test script code. These
scripts are used in the Cucumber and Selenium. Because files containing the
scenarios and steps can be cumbersome and creating test scripts can be hard, using
this recommended work may be challenging.

1422

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

In the latest studies, notable approaches have been introduced for enhancing
regression testing in the context of web applications. The researches by Yandrapally
& Mesbah (2023) and Nass et al. (2023) introduce innovative approaches that
enhance different facets of web application testing and automation. (Yandrapally &
Mesbah, 2023) introduced FRAGGEN, a technique that generates tests for web
applications using specially designed models. This approach utilizes state abstraction
through fragments and analyzes page fragments in detail to improve the accuracy of
model inference and test generation. FragGen has some limitations, such as the
need for intricate semantic inference beyond basic characteristics, assumptions
regarding changes induced by crawlers in live web applications, and constrained
generalizability due to controlled assessments. Furthermore, the manual labeling
introduces concerns about internal validity, while FragGen's suitability is primarily
confined to web applications and doesn't directly extend to broader domains.

In contrast, (Nass et al., 2023) introduced Similo, a similarity-based technique for
locating web elements in test automation. Similo computes similarity scores
between locator parameters to find similar web elements, leveraging attributes,
positions, texts, and images for repair suggestions. The Java-based implementation
seamlessly integrates with Selenium test suites. Similo approach has some
limitations including assuming correct location based on a single locator and a
failure rate of 11% in its experimental study, contrasting with 27% for a theoretical
LML variant. Also, its effectiveness varies with changes' complexity.

Test cases can be created by using the techniques for gathering interaction of the
user in pairs of names and values and URL form. Such a technique called Leveraging
User Session Data as used in some research (Elbaum et al., 2005) (Sampath & Bryce,
2012). (Elbaum et al.,, 2005) presented a testing approach for Web-based
applications which leverages captured data during users' sessions to create test
cases. (Elbaum et al., 2005) has some limitations including 1. Not all Web apps may
be represented by this approach. 2. May not capture all possible user interactions or
edge cases. 3. The effectiveness may be limited by no. of users' sessions collected
and cost spend in collecting and analyzing additional data. 4. May not be effective

1423

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

for detecting faults that are not likely to be encountered during normal user
operations, such as faults that require specific name-value pairs.

(Sampath & Bryce, 2012) proposed a method to improve the rate at which faults are
detected based on user sessions by ordering reduced test suites. The authors offer
multiple methods for ordering test suites based on the priority criteria. They also
developed Mod_APFD_C which is a measurement for comparison between the
various sized test suites and it includes the cost. The main limitations of (Sampath &
Bryce, 2012) is that the effectiveness of the approach may depend on the
characteristics of web apps being tested and quality of the usage logs used to
generate test cases. And, it may require significant computational resources to
generate and order the reduced test suites, which may not be feasible for large web
applications with huge no. user sessions.

Also, Reverse engineering approach can be useful for testing web apps in several
ways. One of the main benefits is that it allows testers to generate models of an
existing web app through the execution, which can be used to understand the
application's design, architecture, and functionality. The generated model can then
be used in the test case creation process and automate the testing process, which
can save time and improve the accuracy of the testing. Additionally, reverse
engineering can help identify anomalous behaviors in the application, which can be
used to improve the application's quality and performance. Finally, reverse
engineering can be used to analyze the navigation habits of users, which can help
improve the user experience of the application.

In (Draheim et al., 2005) described a tool called Revangie for form-oriented analysis,
which reconstructs analytical models using black box reverse engineering. This
research work also used clustering methods and statistical testing to refine and
coarsen the model as needed. The main limitation of (Draheim et al., 2005) is that
initial models generated by the proposed tool may not be optimal for all use cases.
Some other techniques used by (Artzi et al., 2010) called explicit state model
checking which they used for finding faults in web apps that used PHP by using
dynamic test generation, combined concrete and symbolic execution. The technique
is implemented in a tool called Apollo, which automatically generates tests and can

1424

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

be used for finding and fix underlying faults. There have been several recent
additions to the field of web-based application testing, as an example the proposal
of a new coverage criterion called hybrid coverage for dynamic web testing
proposed by (Zou et al., 2013) which combines statement coverage and HTML
element coverage to cover both client-side and server-side features. The approach
uses a web crawler to generate a web Ul model and collects test data at runtime to
calculate coverage information. According to the findings, hybrid coverage is more
effective at finding bugs than element coverage and statement coverage.

Some studies offered structural testing as a technique for their work, including (Artzi
et al., 2010), while others utilized behavioral testing, including (Sampath & Bryce,
2012) (Potrus, 2020). (Elbaum et al.,, 2005) (Panthi & Mohapatra, 2017) used
functional testing which is a type of behavioral testing. Also, (Yandrapally & Mesbah,
2023) and (Nass et al., 2023) mainly focused on regression testing. Some other
studies used both structural and behavioral testing (Zou et al., 2013) (Zou et al.,
2014).

Although certain studies' research is utilized to test web-based apps (Elbaum et al.,
2005) (Artzi et al., 2010) (Sampath & Bryce, 2012) (Zou et al., 2014) (de Moura et al.,
2017) (Yandrapally & Mesbah, 2023) and (Nass et al.,, 2023). However, other
research focuses specifically on dynamic web applications (Zou et al., 2013) (Panthi
& Mohapatra, 2017).

While (Zou et al., 2013) (Elbaum et al., 2005) (Panthi & Mohapatra, 2017) and other
proposed works are semi-automatic, some are fully automated and don't require
any human interaction like (Artzi et al., 2010) (Yandrapally & Mesbah, 2023) and
(Nass et al., 2023).

Such tools that are used in developing the proposed testing approaches including
Crawljax, Selenium Webdriver, Xdebug and PHPUnit, PHP, Schoolmate and
Timeclock, AJAX, ChoiceFinder, VeriSoft, WebNavigator, and Error Checker,
Microsoft JET Database Engine, Crawlers such as LinkCheck, Sitelnspector, Weblint,
Webtrends, HTML verifier, NuSMV, WebKing, Cucumber, Apache POI and JUnit.
Among all of these tools, Selenium Webdriver and Crawljax are the most commonly
used.

1425

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

Previous research has explored diverse testing techniques and methodologies for
web applications, including Model-Based Testing (MBT), dynamic analysis, reverse
engineering, and various coverage criteria. Table 1 provides a comprehensive
comparison of the related work. Researchers have aimed to enhance the efficiency
and effectiveness of web app testing, addressing dynamic content, coverage, and
scalability. While this study focuses on optimizing web app testing through a Model-
based approach to tackle challenges from dynamic web nature to comprehensive
testing with reduced time. This research introduces a graph decomposition
algorithm inspired by Karger's, tailored for web app testing.

Additionally, this study emphasizes multithreading for parallel test case execution,
resulting in faster testing. Performance is evaluated across different partitioning
levels for an optimal balance. Visualization techniques offer insights into web app
structure, aiding understanding and testing. By decomposing the web app graph and
generating subgraph-specific test cases, this approach significantly reduces testing
time while ensuring thorough coverage. It effectively addresses dynamic web app
challenges and shows promising results in time reduction and accuracy
enhancement.

Table (1): comprehensive comparison of the related work

Referen | Techniqu Test Applicati | Automatio | Tools, Main Limitation
ce esused | Strategy on n level technolo
gies used
(Elbaum| user- | functional Web Semi- - Could overlook certain
,2005) | session- | testing, |applicatio| automated interactions or edge cases,
based |behavioral ns Effectiveness limited by session
testing testing quantity and costs, May not

catch rare faults or specific
issues, Requires extra effort to
set up and maintain data

infrastructure.
(Drahei | Reverse |behavioral | dynamic Semi- HTTP Initial models from the tool
m, Dirk, | engineeri | testing |web sites | automated | Client might not suit all cases
2005) ng, optimally, The tool aims to
statistical restore form-based models of
testing, web apps, which might not fit all

1426

QALAAI ZANISTSCIENTIFIC JOURNAL

A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq

Vol. (10), No (4), Winter 2024

ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

and app types or analysis needs,
clustering Accuracy and completeness of
the Revangie model could be
impacted by aspects like app
complexity, dynamic content,
and client-side scripting.
(Achkar,| Model |behavioral| Web Semi- TestOpti intricacy of creating and
2010) Based testing |applicatio| automated | mal tool | maintaining accurate models,
Testing ns potential incomplete coverage,
(MBT) reliance on specific tools,
necessary human involvement,
and challenges in scaling for
complex and large applications.
(Artzi, | explicit- | Structural | PHP web Fully HTML Limited sources of input
2010) state testing |applicatio | automated | verifier parameters, Limited forms of
model ns constraints to be solved,
checking Simulating user inputs based on
locally executed JavaScript,
Limited external validity.
(Sampa User- | behavioral Web Semi- replay | The approach's success relies on
th, session- testing |applicatio | automated tool, the specific attributes of the
2012) based ns CPUT tested web application and the
testing, (Combina quality of the usage logs
test suite torial- employed to create test cases,
reduction based Creating and organizing
, test Prioritizat| streamlined test suites could
suite ion for necessitate considerable
prioritizat User- computational power, which
ion, session- | could be impractical for sizable
concept- based |web applications with numerous
analysis- Testing) user sessions.
based
reduction
techniqu
e
(Tanida | Model |behavioral | dynamic Semi- Dynamic | Counterexample reproducibility
2013) based testing web automated | crawling, relies on the approach's
testing applicatio Model abstraction level, Evaluation's
(MBT) ns checking internal validity hinges on
techniqu | software tool implementation,
es, Model generation is intrinsically
NuSMV, incomplete due to resource

1427

QALAAI ZANISTSCIENTIFIC JOURNAL

A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

AJAX, constraints, Crawling time limits
Selenium, | large-state web apps, Crawler's
WebKing, computed STG is an over-
and Sahi, approximation, leading to
Template potential false positives.
-based
specificat
ion
language,
Crawljax.
(Zou, |statemen both dynamic Semi- Crawljax, Limited number of subject
Yunxiao t structural web automated [Selenium,| programs, incomplete web Ul
,etal. | coverage and applicatio Xdebug | model, limited coverage criteria,
2013) and behavioral ns and limited fault-detect rate, limited
HTML testing PHPUnit, | applicability, limited scalability.
element PHP,
coverage, Schoolma
Ul model, te and
Test case Timecloc
prioritizat k, AJAX,
ion HTML
(zou, Virtual | combinati web Semi- Apollo, Incomplete client-side code
2014) DOM | on of both |applicatio | automated | Crawljax, coverage, Challenge in
coverage, | structural ns Web measuring test sufficiency,
model and crawlers, Limited dynamic web app
based |behavioral AJAX feature handling, Reliance on
testing testing manual inputs introducing
human error and increasing
testing effort, Limited scalability.
(Panthi, | model- |behavioral | Dynamic Semi- JTSG may not be suitable for all web
2017) based testing, web automated |algorithm | development languages and
testing | functional |applicatio frameworks. It may not be
testing n optimal for all web applications
and may require further
optimization techniques.
(Nagow | Modellin GUI web Semi- Selenium | Offers limited HTML element
ah, g testing based | automated | WebDriv | support, focusing on single-page
2017) |Language |and event- |applicatio er, analysis, lacking whole-website
(umL), driven ns Apache examination. Validation rules
Model- testing POI, solely obtainable from
Based JUnit, JavaScript. Relies on coding
Testing Eclipse. standards for proper system

1428

QALAAI ZANISTSCIENTIFIC JOURNAL

A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq

Vol. (10), No (4), Winter 2024

ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

function. Inadequate for
complex apps with multiple

controls and validations,
struggles with rapidly changing
dynamics. Falters with intricate
user interactions, such as drag-
and-drop, pop-ups, and multi-

tab interfaces.

(de BPMN | functional Web Semi- BPMN, The files containing the
Moura, | (Business | testing |applicatio| automated | BPMS, scenarios and steps can be
2017) | Process ns XML, cumbersome, Creating test

Model Selenium, | scripts can also be challenging,
and Cucumbe | Technical limitations such as
Notation) r, improving the treatment of
model, program | processes with recursion and
which is a ming recognition of the different
form of language names of tags.
model- s such as
based Java and
testing Python.
(Potrus, | Model- |Behavioral| Web fully Google | Effectiveness hinges on accurate
Moayad| Based testing |applicatio | automated | Chrome model construction reflecting
Y. 2020)| Testing ns extension| expected behavior, Limited to
(MBT) black-box testing, omitting
internal code structure, possibly
missing certain errors, Suitability
varies, complex websites may
not model accurately, Resource
demands might hinder
scalability, particularly for large
sites.
(Yandra| Model- | Regrission Web fully WebDriv | Semantic Inference, Test Oracle
pally & | Based testing |applicatio | automated | er APl in Generation, Limited
Mesbah | Testing ns Java, VIPS Generalizability, Manual
,2023) | (MBT), Algorithm Labeling, Limited Scope
Fragment , APTED
-based and
Analysis Histogra
m,
CRAWLIA
X Plugin

1429

QALAAI ZANISTSCIENTIFIC JOURNAL

A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024

LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)
(Nass et | Levensht | regression web fully java Reduced sensitivity to technical
al., ein testing at | applicatio| automated | program | issues, Threshold determination
2023) | Distance, the ns ming challenge, Limited evaluation
Comparis | graphical language, scope, Selection of locator
on of user selenium | parameters, Lack of optimization
Locator | interface webdrive in weights
Paramete | (GUI) level r
rs,
Integratio
n with
Java-
based
Selenium
Test
Suites,
Weighted
Approach

4. Methodology
In this research work, duration time to check the broken links were calculated and

tried to find the optimal. The procedure involved visualizing website links through
site graphs using the "requests" and "Beautiful Soup" libraries. Then graph
decomposition technique was utilized to partition the graph model generated in the
first step using the Karger algorithm, with modifications for balanced graph
partitioning. Test cases were generated through path coverage, ensuring
comprehensive edge coverage. During the execution of these test cases, the
implementation of multithreading through Python's threading module enabled
parallelized execution.

Several example websites with more than 100 pages each were used, providing
substantial data for analysis. Due to simplicity, readability, and flexibility, Python
programming language was used, which is a widely used high-level, interpreted
computer language for a variety of applications such as web developing, artificial
intelligence, data analysis, and scientific computing (Yuill & Halpin, 2006).

1430

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

4.1 Web Graph Visualization

To visualize the website links, a site graph is used that was presented by (Tomlinson,
2020) The program written in python which automatically lists all the links of an
example website in a form of graph that uses it to create test cases in the next
steps. Each node in the graph corresponds to a page on the website, and each edge
represents the link that redirects the user from one page to another. The site graph
is to fetch the web pages, “requests” library was used. And to parse each webpage,
“Beautiful Soap” was used. pyvis which uses vis.js was used to draw and visualize
the graph. An example website is presented in figure 1.

17 /260
o\' 7, o
2o/

gl 1
‘Al O
i

Figure (1): Website graph visualization

1431

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

4.2 Web Graph Decomposition

There are many graph decomposition algorithms to use to partition a graph but for
the proposed work, the algorithm should have some specific properties to fit the
research needs. First, the algorithm should be applicable for directed graphs
because the links in the website redirect a page (starting node) to another page
(destination node). Second, the algorithm used should divide the graph into 2n sub
graphs where n denotes the number of nodes. And each sub-graph should have the
same number of nodes. Third, the algorithm should divide the graph with min-cut
(minimum cut) which is the smallest number of edges required to divide the graph
into two disjoint subgraphs.

A technique created by Michelle Girvan and Mark Newman in 2002 for identifying
community structure in networks is known as Girvan and Newman which looks for
community edges using edge betweenness information. The Girvan-Newman
technique becomes impractical for very large graphs, because of its scalability. The
algorithm's running time is proportional to the graph's number of edges, which can
be computationally expensive for large graphs which make it impossible to identify
communities in huge networks (Girvan & Newman, 2002). Because of this, this
method was not used.

Brian Kernighan and Shen Lin introduced a heuristic method known as Kernighan-Lin
for partitioning graphs. When dividing a graph's nodes into groups of a certain size,
the algorithm tries to reduce the total cost of all connections cut. (Kernighan & Lin,
1970). But there are some drawbacks to the Kernighan-Lin method, including: 1. The
algorithm is not practical for large graphs because it has O(n3) time complexity,
where n denotes the number of graph vertices. The algorithm might take a while to
process big graphs. 2. For graphs with weighted or directed edges, it might not be
suitable. 3. The algorithm may not perform well in graphs with highly unequal node
sizes. It might fail to identify a suitable split.

Another community detection method that presented by (Blondel et al., 2008) can
be used for large networks called Louvain algorithm which utilizes modularity
optimization. Several drawbacks of the Louvain algorithm are: 1. the algorithm may
not be capable of identifying communities on a smaller scale than a particular size,

1432

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

which is a known limitation of modularity optimization. 2. The accuracy of the
algorithm is not as good as some other algorithms. 3. The algorithm's output is
determined by the sequence that each of the nodes are analyzed, which can
influence the computation time.

Another partitioning algorithm that uses the matrix's eigenvectors calculated from
point distance called spectral partitioning (Ng et al., 2001). The spectral partitioning
algorithm has some limitations including: 1. Many algorithms that use eigenvectors
have no proof that they will actually compute a reasonable clustering. 2. Spectral
partitioning methods tend to focus on simplified algorithms that only use one
eigenvector at a time, which may not be optimal. 3. Spectral partitioning is
computationally expensive for large datasets. 4. Spectral partitioning may not work
well for datasets with complex structures or noise.

Among different decomposition algorithms, the Karger algorithm can be used which
is a randomized method for searching undirected weighted graphs for global min-
cuts. The technique is extremely straightforward, and it works by continuously
contracting randomly selected edges until there are only two nodes remaining
which are the two sides of the min-cut (Karger, 1993). Because of the randomization
that Karger uses, the algorithm might not find the exact min-cut, the estimate's
accuracy is influenced by the graph's size and the number of repetitions. Based on
that, as the number of iterations rises, so does the probability of finding the right
min-cut.

Karger's algorithm has the following advantages: 1. It is easy and simple to use. 2. It
is really effective and efficient due to the use of randomization to determine the
graph's min-cut. 3. It can efficiently handle large-scale graphs containing a lot of
nodes and edges because of the polynomial time complexity of the algorithm. 4.
Despite being randomized, the algorithm has a high probability of discovering the
accurate min-cut. 5. The method can be modified easily to locate approximative
min-cuts or to resolve associated issues, like the max-flow issue.
Despite having all of these advantages, Karger has the issue of not partitioning the
graph into equal sized communities. To adjust the Karger algorithm a new version of
the algorithm is presented. The steps of the Modified Karger Algorithm are shown

1433

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

below. The modified version contracts the randomly selected node with its
neighbors until half nodes in the graph are contracted which represent one
community and the rest of the nodes be the other community.

let n be the total no. of nodes in the original graph
select a random node x
repeat until no. of nodes equals (n/2 + 1)

contract x with a neighbor node

The presented work decomposes the graph into equal sized subgraphs repeatedly
by 2n, where n denotes the number of iterations. The decomposition stops when
one of the communities has only one node which cannot be divided more. To cover
the cut-edges, they are added to the community where the starting node is located.
Sample graph decomposition is presented in figure 2.

1

Q. .
2 \"\\t

‘_{/"’ e y \J
\ > A

\ / : ‘
| \
R

-

e . l 5
? \\—/’)\
2 — e
"‘4———>(
'/\’\L, y - />

1

(b) (c)

Figure (2): Sample graph (a) decomposed to subgraphs shown in (b) and (c)
1434

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

4.3 Test Case Generation

The path coverage technique was used to create the test cases to ensure the
covering of all the possible paths. Each test case covers a list of nodes and edges
which represents a link in the website. A graph with directed edges, also known as
arcs, connecting its nodes is known as a directed graph (or digraph) (Bang-Jensen &
Gutin, 2008). For a node x in a directed graph, an edge that connects node x as
starting node (origin node) to another node is called outgoing edge or out-edge of
node x. An edge that connects a node-to-node x as an end node (destination node)
is called incoming edges or in-edges of node x. Generated test cases are covering all
the edges in the graph. For creating test cases, the following technique is used:

Repeat until all edges are covered
Create a new test case with path p
Select a random edge x and add to p
While x has an in-edge
Connect x with an in-edge and add to p
While x has an out-edge
Connect x with an out-edge and add to p

4.4 Multithreading

Multithreading is a model for parallel computing in which several CPU cores work on
a single set of input data. It is possible to consider tasks distributed across several
threads to be sub-tasks that are accessing the same memory locations (Khot, 2017).
Multithreading allows for parallel processing of tasks, which can lead to improved
performance and faster execution times. In the proposed work, multithreading was
utilized to speed up and reduce time spent during the process of executing the test
cases. In Python programming language which is used in this research,
multithreading can be achieved using the ‘threading™ module. In this work, each
partition level uses the same number of threads as subgraphs at that level. And each
thread is generated for each subgraph to run the test cases for that specific
subparagraph.

1435

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

5. Experimental Results and Discussion
In this proposed work, the following research questions were answered:
e Isthe time needed to test website links decreased when it’s partitioned into
smaller sections?
e What is the optimal partition level for testing an example website based on
time optimization?
e Isthe graph decomposition technique used in the proposed work efficient to
use for testing?
The partitioned website graph into subgraphs is shown in figures 3. The proposed
decomposition algorithm was presented based on Karger's algorithm which is more
effective and suitable with research needs. Based on the partitioned graph, the
subgraphs can be used in the case of dynamic graphs when a part of the website is
added or changed or removed. That way, only the subgraphs containing the
modification will be affected and should be retested.

(c) (d)

1436

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

(e) (f)

Figure (1): The original web application graph model shown in (figure 1)
decomposed to 2 subgraphs (a) and (b). Then, subgraph (a) is decomposed to
another 2 smaller subgraphs (c) and (d). And subgraph (b) decomposed to (e) and

(f).

In order to find the least possible time to run the tests of a website, some example
websites with more than 100 pages each were used which are listed in table 2. The
program will create test cases and check the validity of links as displayed in figures 4
and. Test cases are displayed as a path starting from a node (page) to other nodes
sequentially.

Table (2): List of case studies for applying the proposed algorithm and their size

Website Link Total no. of pages Total no. of links
1 https://www.cs.cornell.edu/~kt/ 298 730
2 https://cpanel.net/ 341 2864
3 | https://wiki.python.org/moin/BeginnersGuide/ 261 463
4 https://safety.google/ 891 7239

1437

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

testcase 1: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/', 'https://
www.cs.cornell.edu/~kt/post/', 'https://www.cs.cornell.edu/~kt/post/quine/', 'https://
www.cs.cornell.edu/home/kleinber/"]

testcase 2: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/authors/austin-r.-
benson/', 'https://cis.cornell.edu']

testcase 3: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/post/6502-2/"',
‘https://en.wikipedia.org/wiki/WDC_65C22']

testcase 4: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/authors/kiran-
tomlinson/', 'https://www.cs.cornell.edu/~kt/publication/2018-tomlinson-examining—-phylogeny—
inference/', 'https://sourcethemes.com/academic/']

testcase 5: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/guitar', 'https://
www.cs.cornell.edu/~kt/post/guitar-build/', 'https://www.electricherald.com/fender-stratocaster-
templates/']

testcase 6: ['https://www.cs.cornell.edu/~kt/guitar', 'https://youtu.be/LR-T2qTLF60"]

testcase 7: ['https://www.cs.cornell.edu/~kt/', 'https://scl.cornell.edu/coe/lindseth-climbing-
center']

testcase 8: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/graph/', 'https://
www.cs.cornell.edu/~kt/post/site-graph/', 'https://pyvis.readthedocs.io/en/latest/"']

testcase 9: ['https://www.cs.cornell.edu/~kt/', 'https://www.cs.cornell.edu/~kt/news', 'https://
www.cs.cornell.edu/~kt/publication/2020-commins—-diverging-string-sequences', 'https://github.com/
tomlinsonk/diverging-string-seqs']

testcase 10: ['https://www.cs.cornell.edu/~kt/', 'https://mengtingwan.github.io/']

testcase 11: ['https://www.cs.cornell.edu/~kt/post/6502-2/', 'https://www.cs.cornell.edu/~kt/post/
6502-3', 'https://www.cs.cornell.edu/~kt/post/6502-4', 'https://eater.net/6502']

testcase 12: ['https://www.cs.cornell.edu/~kt/post/site-graph/', 'https://developer.mozilla.org/en-
US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types']

testcase 13: ['https://www.cs.cornell.edu/~kt/authors/kiran-tomlinson/', 'https://www.cs.cornell.edu/
~kt/publication/2019-tomlinson-cyclic-cellular-automaton/', 'https://gohugo.io’]

testcase 14: ['https://www.cs.cornell.edu/~kt/post/quine/', 'https://github.com/tomlinsonk']
testcase 15: ['https://www.cs.cornell.edu/~kt/', 'https://web.stanford.edu/~jugander/"']

Figure (4): Test cases of a sample website

1438

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

https://su.edu.krd/taxonomy/term/33: is reachable

https://su.edu.krd/: is reachable
https://su.edu.krd/ku/unicode: is reachable
https://su.edu.krd/ku/node/2281: is reachable
https://www.facebook.com/salahaddin.university.erbil: is reachable
https://su.edu.krd/ku/unicode: is reachable
https: su.edu.krd/ku/media/zanko-press: is reachable
https://su.edu.krd/ku/media/activities: is reachable
https://su.edu.krd/media/activities/feugiat-iaceo-nutus: is reachable
https://su.edu.krd/taxonomy/term/281: is reachable
https://su.edu.krd/research-center/activities/damnum-imputo—-metuo-os: is reachable
https://su.edu.krd/taxonomy/term/261: is reachable
https: su.edu.krd/audit/activities/iaceo-typicus-wisi: is reachable
https: su.edu.krd/taxonomy/term/363: is reachable
https://su.edu.krd/printhouse/activities/letalis-suscipit-turpis-utrum: is reachable
https://su.edu.krd/taxonomy/term/362: is reachable
https://su.edu.krd/housing/activities/verto-vicis: is reachable
https://su.edu.krd/housing/activities: is reachable
https://su.edu.krd/housing/activities/abbas: is reachable
https://su.edu.krd/taxonomy/term/349: is reachable
https edu.krd/audit/activities/letalis-roto-valde: is reachable
http://colleges.su.edu.krd/science/: is reachable

s://su.edu.krd/ku/unicode: is reachable

edu.krd/DCD: is reachable
y .edu.krd/ga/activities: is reachable

https://su.edu.krd/qa/activities/koenwwsy—-dwwaem-2022-2023: is reachable

https://su.edu.krd/: is reachable

https: su.edu.krd/central-library: is reachable
https: su.edu.krd/Cl/kurdish—-journals: is reachable
https://su.edu.krd/Cl: is reachable

https://su.edu.krd/: is reachable
https://su.edu.krd/see-centre: is reachable

https://su.edu.krd/ku/unicode: is reachable
https: su.edu.krd/ku/activities/symposium: 1is reachable
https://su.edu.krd/ku/activities/training: is reachable

Figure (5): Validity check of website links

Tables 3 and 4 show the results that were discovered. As displayed for each website,
the best possible partition is different which is chosen based on the least time
duration.

1439

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

Table (3): Testing results in example website https://www.cs.cornell.edu/~kt/

No. of Test Cases Time (in second)

whole website 627 1449.747305

partition to 2 647 899.603601

partition to 4 656 722.621033

partition to 8 663 593.991405
partition to 16 668 361.184642
partition to 32 670 250.318771
partition to 64 674 133.38867
partition to 128 675 132.510486
partition to 256 678 140.233086

Table (4): Testing results of example website https://cpanel.net/

No. of Test Cases Time (in second)

whole website 2784 5965.955895

partition to 2 2798 4245.793578

partition to 4 2804 3242.491023

partition to 8 2822 2176.939256
partition to 16 2834 1774.1613
partition to 32 2841 1479.395243
partition to 64 2845 1016.846121
partition to 128 2853 682.450128
partition to 256 2855 635.457315

Based on the results found, as the graph is decomposed, the testing time decreases
until it reaches its limit when the number of test cases is high, which affects the time
of the test.As shown in figure 6, an example website
(https://glassdoorspecialist.com/) is used. It is shown that at first, the time duration
of the test is really high. Then it decreases as the website is partitioned more. The
number of test cases is always increasing due to the breaking of the graph.
However, the time will go from decreasing to increasing, as depicted in figure 7
below.

1440

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

== no. of test cases == Time

800
600
400
200
0
whole partition to partition to partition to partition to partition to partition to partition to
website 2 4 8 16 32 64 128
graph communities
Figure (6): The effect of test case length on testing time
250
200
150
[}
£
'—
100
50

100 200 300 400 500 600

no. of test cases

Figure (7): Optimal testing time length based on the number of test cases

1441

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

6. Conclusion

In this research work, an approach is proposed for optimizing time spent in the
testing phase of software development lifecycle and increasing accuracy of dynamic
web applications.

Graph visualization was automatically created to visualize the website. Also, an
Updated decomposition algorithm is presented to decompose the visualized graph
into equal sized subgraphs. The graph decomposition approach can be really useful
in the case of regression testing, especially for dynamic web applications which are
frequently changed based on many factors. After each modification, insertion or
deletion of any section of the website, the only sub-sections can be retested which
will lead to optimize the time of the testing process. Then, test cases are created
and executed using the multi-thread module in python.

According to the results, the time required is reduced when the graph is
decomposed until it approaches its maximum, where the total no. of test cases has
a direct effect on how long the test takes.

The suggested study can be improved further by applying various forms of testing.
Also, it can be integrated with other automated testing tools to achieve better
results.

References:

1. Achkar, H. (2010). Model based testing of web applications. Proceedings of 9th
Annual STANZ, Australia.

2. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., & Ernst, M. D. (2010).
Finding Bugs in Web Applications Using Dynamic Test Generation and Explicit-State
Model Checking. IEEE Transactions on Software Engineering, 36(4), 474—494.
https://doi.org/10.1109/TSE.2010.31

3. Arumugam, S., Hamid, I., & Abraham, V. M. (2013). Decomposition of graphs into
paths and cycles. Journal of Discrete Mathematics, 2013.

4. Bang-Jensen, J., & Gutin, G. Z. (2008). Digraphs: Theory, algorithms and
applications. Springer Science & Business Media.

5. Benedikt, M., Freire, J., & Godefroid, P. (2002). VeriWeb: Automatically Testing
Dynamic Web Sites.

1442

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10), P10008.

de Moura, J. L., Charao, A. S., Lima, J. C. D., & de Oliveira Stein, B. (2017). Test case
generation from BPMN models for automated testing of Web-based BPM
applications. 2017 17th International Conference on Computational Science and Its
Applications (ICCSA), 1-7. https://doi.org/10.1109/ICCSA.2017.7999652

Dearle, A. (2007). Software deployment, past, present and future. Future of
Software Engineering (FOSE’07), 269—-284.

Di Lucca, G. A., & Di Penta, M. (2003). Considering browser interaction in Web
application testing. Fifth IEEE International Workshop on Web Site Evolution, 2003.
Theme: Architecture. Proceedings., 74—81.
https://doi.org/10.1109/WSE.2003.1234011

Draheim, D., Lutteroth, C., & Weber, G. (2005). A Source Code Independent Reverse
Engineering Tool for Dynamic Web Sites. Ninth European Conference on Software
Maintenance and Reengineering, 168—177. https://doi.org/10.1109/CSMR.2005.4
Elbaum, S., Rothermel, G., Karre, S., & Fisher I, M. (2005). Leveraging user-session
data to support Web application testing. IEEE Transactions on Software Engineering,
31(3), 187-202. https://doi.org/10.1109/TSE.2005.36

Fewster, M., & Graham, D. (1999). Software test automation. Addison-Wesley
Reading.

Freeman, H. (2002). Software testing. IEEE Instrumentation & Measurement
Magazine, 5(3), 48-50.

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826.
Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016). Software Testing
Techniques: A Literature Review. 2016 6th International Conference on Information
and Communication Technology for The Muslim World (ICT4M), 177-182.
https://doi.org/10.1109/ICT4M.2016.045

Karger, D. R. (1993). Global Min-cuts in RNC, and Other Ramifications of a Simple
Min-Cut Algorithm. Soda, 93, 21-30.

Kassab, M., DeFranco, J. F., & Laplante, P. A. (2017). Software testing: The state of
the practice. IEEE Software, 34(5), 46-52.

Kasurinen, J., Taipale, O., & Smolander, K. (2010). Software test automation in
practice: Empirical observations. Advances in Software Engineering, 2010.
Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2), 291-307.

Khan, F. N., Ali, A., Hussain, 1., Sarwar, N., & Rafique, H. (2019). Repairing Broken
Links Using Naive Bayes Classifier. In I. S. Bajwa, F. Kamareddine, & A. Costa (Eds.),

1443

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Intelligent Technologies and Applications (pp. 461-472). Springer.
https://doi.org/10.1007/978-981-13-6052-7 40

Khot, T. (2017). Parallelization in Python. XRDS: Crossroads, The ACM Magazine for
Students, 23(3), 56-58.

Kit, E., & Finzi, S. (1995). Software testing in the real world: Improving the process.
ACM Press/Addison-Wesley Publishing Co.

Lei Xu, Baowen Xu, Zhengiang Chen, Jixiang Jiang, & Huowang Chen. (2003).
Regression testing for Web applications based on slicing. Proceedings 27th Annual
International Computer Software and Applications Conference. COMPAC 2003, 652—
656. https.//doi.org/10.1109/CMPSAC.2003.1245411

Miiller, E. (2005). Website testing. Companion Paper of “The Web Site Quality
Challenge”. Proceedings of QW 1998 Conference. Https://Bit. Ly/2WIlj1lvp [Accessed:
15 May 2020].

Nagowah, L., & Kora-Ramiah, K. (2017). Automated complete test case coverage for
web based applications. 2017 International Conference on Infocom Technologies
and Unmanned Systems (Trends and Future Directions) (ICTUS), 383—390.
https://doi.org/10.1109/ICTUS.2017.8286037

Nass, M., Alégroth, E., Feldt, R., Leotta, M., & Ricca, F. (2023). Similarity-based Web
Element Localization for Robust Test Automation. ACM Transactions on Software
Engineering and Methodology, 32(3), 1-30. https://doi.org/10.1145/3571855

Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems, 14.

Paige, M. R. (1977). On partitioning program graphs. IEEE Transactions on Software
Engineering, 6, 386—393.

Panthi, V., & Mohapatra, D. P. (2017). An approach for dynamic web application
testing using MBT. International Journal of System Assurance Engineering and
Management, 8(52), 1704-1716. https://doi.org/10.1007/s13198-017-0646-0
Potrus, M. Y. (2020). GENERATING MODELS OF SOFTWARE SYSTEMS DURING
EXPLORATORY. Zanco Journal of Pure and Applied Sciences, 32(4), 12-21.

Ricca, F., & Tonella, P. (2003). Using clustering to support the migration from static
to dynamic web pages. 11th IEEE International Workshop on Program
Comprehension, 2003., 207-216.

Sampath, S., & Bryce, R. C. (2012). Improving the effectiveness of test suite
reduction for user-session-based testing of web applications. Information and
Software Technology, 54(7), 724—-738. https.//doi.org/10.1016/j.infsof.2012.01.007
Setiani, N., Ferdiana, R., Santosa, P. I., & Hartanto, R. (2019). Literature review on
test case generation approach. Proceedings of the 2nd International Conference on
Software Engineering and Information Management, 91-95.

1444

LFU

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

34.

35.

36.

37.

38.

39.

40.

41.

42.

Tanida, H., Prasad, M. R., Rajan, S. P., & Fujita, M. (2013). Automated System
Testing of Dynamic Web Applications. In M. J. Escalona, J. Cordeiro, & B. Shishkov
(Eds.), Software and Data Technologies (Vol. 303, pp. 181-196). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-36177-7 12

Tomlinson, K. (2020, March 15). Site Graph. Kiran Tomlinson.
https://www.cs.cornell.edu/~kt/post/site-graph/

Tonella, P., & Ricca, F. (2002). Dynamic model extraction and statistical analysis of
Web applications. Proceedings. Fourth International Workshop on Web Site
Evolution, 43-52. https://doi.org/10.1109/WSE.2002.1134088

Wen, R. B. (2001). URL-driven automated testing. Proceedings Second Asia-Pacific
Conference on Quality Software, 268—-272.
https://doi.org/10.1109/APAQS.2001.990029

Yahaya, J. H., Ibrahim, A. A., & Deraman, A. (2017). Software Process Model for
Dynamic Website Development towards Quality Product. Journal of
Telecommunication, Electronic and Computer Engineering (JTEC), 9(3—-3), Article 3—
3.

Yandrapally, R., & Mesbah, A. (2023). Fragment-Based Test Generation For Web
Apps. IEEE Transactions on Software Engineering, 49(3), 1086—1101.
https://doi.org/10.1109/TSE.2022.3171295

Yuill, S., & Halpin, H. (2006). Python. Python Releases Wind, 24.

Zou, Y., Chen, Z., Zheng, Y., Zhang, X., & Gao, Z. (2014). Virtual DOM coverage for
effective testing of dynamic web applications. Proceedings of the 2014 International
Symposium on Software Testing and Analysis, 60—-70.
https://doi.org/10.1145/2610384.2610399

Zou, Y., Fang, C., Chen, Z., Zhang, X., & Zhao, Z. (2013). A Hybrid Coverage Criterion
for Dynamic Web Testing.

1445

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

0924 S8 g09d4ia55adS 09 g gdaliyds &3 09diasSLBU pundS 3 ySCusgys
SILa s Saals (SuSa Sluay e «

a9

pd S Hodda Slauoyay o agdoydy Swawdn odo gaely oS BU gawd
Sealins gy 5 5080380 L3 cB3ads 0asiy 20ds @y 3l S4sSIsS lagles sails
IS8 @y g3l s & oleedleS o ooslids g3l Ltasls 09 wods SSaaliyay
S0 ySBL ilgy JIBacSoyaw aiS o SSq Jo SBalya Seelals uigyw
SdleS o il awrus SIS ylen o cdySh (Saugle 555 533 ogyan .y SBaabya
0905 BU Lgas s glys BoaSlay eonyaw o (pogd oS aSoyigubiu
pd & .lhoanandS & ogdatiiiess ggaidweydy g ploesydy SwasS Sog wdg SlSaaliya
U8 o 9ot SIS gogdisyShdS & wlSos jluady SauaSly wogdaniiel pdl dludide
Sog oo golya JsoylS pd gld emddu JlipaadS SLJ gyogw o 0gais 3l
g S yStugys o oy SGLel & cdySos jaals silgs &S wedysos olied SIS Silisge
(Graph Decomposition) cegaisyUg Soary3a lwogyan 09453y S8U SIS auyasS
S do Sl (8IS Jsde SaySaals d cdyseailicd gaSesgguw o cdySes juaSidy
S cblgios oglyS slasy oyl pdd JlueyBa (Sdaluid o @ ylsegdis B 4354l
Ol SaySTgaSanly oaS5 S qliles pds 0gailSy paS 3:% aSH3 go3dy 4 09458 ySBL go9n3
3 S8 @lses yloapand 4 &y sy wlSos s olapgand L3 gyo0w WG S
o9 sl Slinaad o3 ayes ideds 5 SuaS SapedinySBl & o4 G
HolySdlaze ¢ yijiaa

1446

QALAAI ZANISTSCIENTIFIC JOURNAL
A Scientific Quarterly Refereed Journal Issued by Lebanese French University — Erbil, Kurdistan, Iraq
Vol. (10), No (4), Winter 2024
LFU ISSN 2518-6566 (Online) - ISSN 2518-6558 (Print)

) euuﬂﬁeéuﬁﬁ‘ﬂéiiuggdéJﬂ\C&uuiiéa‘,gjﬂﬁJhﬁi\cﬁYL; e L)

1padlal)

5oV il 3 sl e dpeal mraal Cilamapall okt B Al ke ga cyl) il LA
Diad a8 s A Lgia s Qlaal daladl Gaila) e ol cliadail B paiall Gy sl daa g el oy
el Gy gl ik Laa) Jlae (8 At Sl gall Car el lilatl ASsalial) Aaplal
S kil Saaall peaall 138 5 Sl B2 ga s Gamdl s sl (o)) Aeal SN
Gl Bgh Easall 12 C).é\ cém_}} _Q_.U}La.d\ dal o 10aate Bast gl caldndal ksl Jhy s@‘)uﬂ\
ZasaS gl Sl JiAa oy eyl 138 e Sl sk Bla 590 (& HLAAY) Al e i
Sl I s Aa) 53 a3 GOSN HLEAY) Vs e Lis) Jaguat] alidad oy @l dan g ¢ Sl aus)
il) 13 LS a8 gl el Ll e)l 2 3led el 3 e e Q3 Aasall
L oy VB b sl el 1 78 ey SLEAY) Gl e gl gl Gadat JIy o (S
$3% Laa «Jalid JLEAY 3l sall o 230 anadd o () shal) Sai Wil aiSay i o skl s 3550
Adsise Sl 5 Cuy liplai)

1447

